初三數學二次函數的應用教學反思:二次函數教學反思

來源:室內設計 發布時間:2019-08-06 04:44:27 點擊:

  反思它是一種用來提高自身的業務,改進教學實踐的學習方式,不斷對自己的教育實踐深入反思,積極探索與解決教育實踐中的一系列問題,關于初三數學二次函數的應用的教學反思有哪些呢?接下來是小編為大家帶來的關于初三數學二次函數的應用教學反思,希望會給大家帶來幫助。

初三數學二次函數的應用教學反思

  初三數學二次函數的應用教學反思(一)

  二次函數的應用是學習二次函數的圖像與性質后,檢驗學生應用所學知識解決實際問題能力的一個綜合考查,它是本章的難點。新的課程標準要求學生能通 過對實際問題的情境的分析確定二次函數的表達式,體會其意義,能根據圖像的性質解決簡單的實際問題,而最大值問題是生活中利用二次函數知識解決最常見、最 有實際應用價值的問題,它生活背景豐富,學生比較感興趣。本節課通過學習求水流的最高點問題,引導學生將實際問題轉化為數學模型,利用數學建模的思想去解 決和函數有關的應用問題。此部分內容是學習一次函數及其應用后的鞏固與延伸,又為高中乃至以后學習更多函數打下堅實的基礎。

  由于本節課是 二次函數的應用問題,重在通過學習總結解決問題的方法,故而本節課以“啟發探究式”為主線開展教學活動,以學生動手動腦探究為主,必要時加以小組合作討 論,充分調動學生學習積極性和主動性,突出學生的主體地位,達到“不但使學生學會,而且使學生會學”的目的。二次函數應用的教學后,比我預想的效果要好一 些,出現了幾個點引人深思:

  1、精心設計問題,引發學生思考建立數模

  在《二次函數的應用》的教學過程中,復習舊知后,主 要安排了一道例3—水流最高點問題 :人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2m,噴水水流的軌跡是拋物線。如果要求水流的最高點P到噴水槍AB所在直線的距離為1m,且水流的著 地點C距離水槍底部B的距離為2.5m,那么,水流的最高點距離地面是多少米? 以此題為契機,培養學生的分析問題、解決問題的能力。本節課重點放在分析問題,將實際問題轉化為數學問題,建立數學模型解決問題。所以在教學時,教師應有 意鍛煉學生從讀題開始,分析題意,搜索與問題有聯系的數學知識,運用知識和技能使問題獲得解決。在備課中,我發現學生對例題的理解存在困難,采用設計小問 題,鋪設小臺階,引導學生探究,突破教學難點,帶領學生尋找解決的方法。我設計的問題如下:

  (1)讀題,檢索有用信息;

  (2)分析已知,他們講的是什么含義? 根據題意畫出圖形;

  (3)分析所求,是讓我們求什么?將實際問題可轉化為什么知識來解決?

  (4)如何求二次函數的最大值?

  學 生根據老師提出的問題,小組討論,同學間互相交流與補充,在教師的引領下,發現本題就是轉化為求二次函數的最大值問題,逐步將難點突破,幫助學生建立數模 解決問題。學生在動手畫圖、討論的基礎上找到解決的方法與步驟,先求二次函數的解析式,再求二次函數的最大值。學生在理解題意后畫圖形,又加深了對題目的 理解,為解決問題奠定了基礎,進一步體會運用數形結合的思想方法求解二次函數的問題,將數學思想與方法滲透到整個教學過程中。

  2、為學生提供思考的空間,注重一題多解

  學 生在建立平面直角坐標系后,根據題意知道 ,對稱軸是x=1,A點坐標(0,2),B點坐標(0,0),C點坐標(0,2),確定二次函數解析式時,出現了一個小插曲。學生用一般式確定二次函數解 式后,有同學想用其他的方法求解想法,我馬上鼓勵學生去尋找新的方法。四班學生思維活躍,有個學生想用兩根式求解析式,讓這個學生說出自己的思路,其他學 生幫助他進行分析與補充。該同學將A、B、C三點坐標帶入兩根式求解,發現求得解析式與用一般式求得解析式不同,很疑惑,不知道問題出在哪里?我并沒有否 定該同學的方法,而是讓其他學生幫助糾正,在大家的分析圖形中發現,B點坐標不在拋物線上,不能將其帶入。

  在教學中出現分歧時,要給學生空間去思考,發現 問題的原因,從而確定解決得方法,避免今后出現類似錯誤。而六班學生善于思考,在用兩根式求解析式時,我設計一個小陷阱,故意引導學生選用A、B、C三點 求解析式,學生通過計算與觀察,同樣發現了這個問題:B點坐標不在拋物線上,不能將其帶入求解。在這種情景下,追問:如何利用兩根式確定解析式呢?學生積 極性很高,小組討論,學生根據拋物線的對稱性找到它與x軸另一個交點D(-0.5,0),將A、D、C三點帶入可求出二次函數的解析式。在教學中,要注重 解題方法的靈活性,一題多解,開闊學生的思維,提高學生的發現問題,解決問題的能力。在教學過程中,層層設疑,激發學生求知欲,積極主動參與教學活動,大 大提高了課堂效率。

  3、數學來源于生活并運用于生活

  例題3有較強的現實感,例題的選擇增加數學教學的現實性,使學生體驗 數學知識與日常生活的密切聯系,從而培養學生喜愛數學,學好數學的情感。課堂中,學生在解決數學情境問題的過程中,感悟數學來源于生活并運用于生活,激發 學生學習數學的興趣。在課上,學生因問題來自于身邊而思維活躍,有強烈的探索欲望,這樣才能充分發揮學生學習的積極性,進而提高課堂教學質量。

  4、不足之處

  《數 學課程標準》提出:教師不僅是學生的引導者,也是學生的合作者。教學中,要讓學生通過自主討論、交流,來探究學習中碰到的問題、難題,教師從中點撥、引 導,并和學生一起學習探討。在本節課的教學中,教師引導學生較多,沒有完全放開讓學生自主探究學習,獲得新知;學生在數學學習中還是有較強的依賴性,教師 要有意培養學生自主學習的能力。

  教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時盡量考慮周到,既要備教材,又要備學生,更需要教師具有豐富的科學文化知識,這樣才能使我們的學生在輕松活躍的課堂上找到學習的樂趣與興趣。

  初三數學二次函數的應用教學反思(二)

  在新課程中,教學過程要符合學生學習過程,學生在學習過程中應該以探究、實踐、合作學習為重,要善于引導學生積極參與教學過程中的探討活動,讓學生在動手實踐、自主探究與合作交流的過程中來學習數學。教師的教學活動要能激發學生探求新知識的興趣和欲望,逐步培養他們提問的意識,鼓勵學生多思考。同時還要關注他們在數學學習過程中的變化和發展,關注學習方法與習慣的養成。

  在初中一元二次方程和二次函數學習的基礎上,教學中通過比較一元二次方程的根與對應的二次函數的圖象和x軸的交點的橫坐標之間的關系,給出函數的零點的概念,并揭示了方程的根與對應的函數的零點之間的關系.然后,通過探究介紹了判斷一個函數在某個給定區間存在零點的方法和二分法.并且,教科書在“用二分法求函數零點的步驟”中滲透了算法的思想,為學生后續學習算法內容埋下伏筆.

  教學中,對函數與方程的關系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則.分三步來展開這部分的內容.第一步,從學生認為較簡單的一元二次方程與相應的二次函數入手,由具體到一般,建立一元二次方程的根與相應的二次函數的零點的聯系,然后將其推廣到一般方程與相應的函數的情形.第二步,在用二分法求方程近似解的過程中,通過函數圖象和性質研究方程的解,體現函數與方程的關系.第三步,在函數模型的應用過程中,通過建立函數模型以及模型的求解,更全面地體現函數與方程的關系逐步建立起函數與方程的聯系.

  除了函數模型的應用之外,還要介紹函數的零點與方程的根的關系,用二分法求方程的近似解,以及幾種不同增長的函數模型.教科書在處理上,以函數模型的應用這一內容為主線,以幾個重要的函數模型為對象或工具,將各部分內容緊密結合起來,使之成為一個系統的整體.教學中應當注意貫徹教科書的這個意圖,是學生經歷函數模型應用的完整。


看過初三數學二次函數的應用教學反思的還看了:

1.二次函數教學隨筆

2.九年級數學教學工作反思

3.初三數學教學反思范文

4.初三數學教程視頻:二次函數的應用復習

推薦訪問:九年級數學 初三數學二次函數的應用教學反思 初三數學二次函數試題 初三數學二次函數教案
上一篇:2017年屬豬各月運勢是怎樣:2017屬豬人全年運勢女
下一篇:最后一頁

Copyright @ 2013 - 2018 易啊教育網_免費學習教育網_自學.勵志.成長! All Rights Reserved

易啊教育網_免費學習教育網_自學.勵志.成長! 版權所有 湘ICP備11019447號-75

竞猜足球如何分析